Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position.
نویسندگان
چکیده
Anatomical and physiological studies have shown that the "frontal pursuit area" (FPA) in the arcuate cortex of monkeys is involved in the control of smooth pursuit eye movements. To further analyze the signals carried by the FPA, we examined the activity of pursuit-related neurons recorded from a discrete region near the arcuate spur during a variety of oculomotor tasks. Pursuit neurons showed direction tuning with a wide range of preferred directions and a mean full width at half-maximum of 129 degrees. Analysis of latency using the "receiver operating characteristic" to compare responses to target motion in opposite directions showed that the directional response of 58% of FPA neurons led the initiation of pursuit, while 19% led by 25 ms or more. Analysis of neuronal responses during pursuit of a range of target velocities revealed that the sensitivity to eye velocity was larger during the initiation of pursuit than during the maintenance of pursuit, consistent with two components of firing related to image motion and eye motion. FPA neurons showed correlates of two behavioral features of pursuit documented in prior reports. 1) Eye acceleration at the initiation of pursuit declines as a function of the eccentricity of the moving target. FPA neurons show decreased firing at the initiation of pursuit in parallel with the decline in eye acceleration. This finding is consistent with prior suggestions that the FPA plays a role in modulating the gain of visual-motor transmission for pursuit. 2) A stationary eccentric cue evokes a smooth eye movement opposite in direction to the cue and enhances the pursuit evoked by subsequent target motions. Many pursuit neurons in the FPA showed weak, phasic visual responses for stationary targets and were tuned for the positions about 4 degrees eccentric on the side opposite to the preferred pursuit direction. However, few neurons (12%) responded during the preparation or execution of saccades. The responses to the stationary target could account for the behavioral effects of stationary, eccentric cues. Further analysis of the relationship between firing rate and retinal position error during pursuit in the preferred and opposite directions failed to provide evidence for a large contribution of image position to the firing of FPA neurons. We conclude that FPA processes information in terms of image and eye velocity and that it is functionally separate from the saccadic frontal eye fields, which processes information in terms of retinal image position.
منابع مشابه
The neural basis of smooth pursuit eye movements in the rhesus monkey brain.
Smooth pursuit eye movements are performed in order to prevent retinal image blur of a moving object. Rhesus monkeys are able to perform smooth pursuit eye movements quite similar as humans, even if the pursuit target does not consist in a simple moving dot. Therefore, the study of the neuronal responses as well as the consequences of micro-stimulation and lesions in trained monkeys performing ...
متن کاملRole of arcuate frontal cortex of monkeys in smooth pursuit eye movements. II. Relation to vector averaging pursuit.
When monkeys view two targets moving in different directions and are given no cues about which to track, the initiation of smooth pursuit is a vector average of the response evoked by each target singly. In the present experiments, double-target stimuli consisted of two identical targets moving in opposite directions along the preferred axis of pursuit for the neuron under study for 200 ms, fol...
متن کاملEnhancement of multiple components of pursuit eye movement by microstimulation in the arcuate frontal pursuit area in monkeys.
Periarcuate frontal cortex is involved in the control of smooth pursuit eye movements, but its role remains unclear. To better understand the control of pursuit by the "frontal pursuit area" (FPA), we applied electrical microstimulation when the monkeys were performing a variety of oculomotor tasks. In agreement with previous studies, electrical stimulation consisting of a train of 50-microA pu...
متن کاملThe effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements in the rhesus monkey: 1. Single and sequential targets
This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements in three rhesus monkeys. Lesions of the anterior bank of the arcuate, where the frontal eye fields reside, produced major deficits in the execution of saccadic eye movements to sequentially presented targets that did not recover even after 1 year after the lesions. Ablatio...
متن کاملSmooth Pursuit–Related Information Processing in Frontal Eye Field Neurons that Project to the NRTP
The cortical pursuit system begins the process of transforming visual signals into commands for smooth pursuit (SP) eye movements. The frontal eye field (FEF), located in the fundus of arcuate sulcus, is known to play a role in SP and gaze pursuit movements. This role is supported, at least in part, by FEF projections to the rostral nucleus reticularis tegmenti pontis (rNRTP), which in turn pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2002